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Summary

COVID-19 (Coronavirus disease 2019) is a respiratory illness caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). While the pathophysiology of this 

deadly virus is complex and largely unknown, we employ a network biology-fueled 

approach and integrate multiomics data pertaining to lung epithelial cells-specific co-

expression network and human interactome to generate Calu-3-specific human-SARS-

CoV-2 Interactome (CSI). Topological clustering and pathway enrichment analysis show 

that SARS-CoV-2 target central nodes of host-viral network that participate in core 

functional pathways. Network centrality analyses discover 28 high-value SARS-CoV-2 

targets, which are possibly involved in viral entry, proliferation and survival to establish 

infection and facilitate disease progression. Our probabilistic modeling framework 

elucidates critical regulatory circuitry and molecular events pertinent to COVID-19, 

particularly the host modifying responses and cytokine storm. Overall, our network centric 

analyses reveal novel molecular components, uncover structural and functional modules, 

and provide molecular insights into SARS-CoV-2 pathogenicity that may foster effective 

therapeutic design. 
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From the epicenter of the COVID-19 (Coronavirus disease 2019) outbreak in China, the 

disease has spread globally in 185 countries/territories with over 1.4 million confirmed 

cases and almost 87,000 fatalities as of April 07, 2020, and the World Health Organization 

(WHO) warned that the pandemic is accelerating worldwide (Cascella et al., 2020; Hsu 

et al., 2020). Apart from the human tragedy, COVID-19 has a growing detrimental impact 

on the global economy and will likely cause trillions in financial losses worldwide in 2020 

alone. COVID-19 is an infectious respiratory illness caused by a highly contagious and 

pathogenic SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). This single-

stranded RNA virus belongs to the family Coronaviridae and is closely related to another 

human coronavirus SARS-CoV with 89.1% nucleotide similarity (Cascella et al., 2020; 

Wu et al., 2020). SARS-CoV and another human coronavirus MERS-CoV (Middle East 

Respiratory Syndrome-CoV) caused two previous global epidemics in 2003 and 2012, 

respectively, both characterized by high fatality rates (Cascella et al., 2020; Wu et al., 

2020). These coronaviruses mainly spread from a contagious individual to a healthy 

person through respiratory droplets derived from an infected person’s cough or sneeze, 

and from direct contact with contaminated surfaces or objects, where the virus can 

maintain its viability for period ranging from hours to days (Cascella et al., 2020; Wu et 

al., 2020). Unlike other coronaviruses, SARS-CoV-2 transmits more efficiently and 

sustainably in the community according to Center for Disease Control (CDC) (Center et 

al., 2020). While majority of the patients infected with SARS-CoV-2 develop a mild to 

moderate self-resolving  respiratory illness, infants and older adults (≥ 65 years) as well 

as patients with pre-existing medical conditions such as cardiovascular disease, diabetes, 

chronic respiratory disease, renal dysfunction, obesity and cancer are more vulnerable 
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(Cascella et al., 2020; Wu et al., 2020). The pathophysiology of SARS-CoV-2 is complex 

and largely unknown but is associated with an extensive immune reaction referred to as 

‘cytokine storm’ triggered by the excessive production of interleukin 1 beta (IL-1β), 

interleukin 6 (IL-6) and others. The cytokine release syndrome leads to extensive tissue 

damage and multiple organ failure (Cascella et al., 2020). While no vaccine or antiviral 

drugs are currently available to prevent or treat COVID-19, identifying molecular targets 

of the virus could help uncover effective treatment. Towards this, generation of a human-

SARS-CoV-2 interactome, integration of virus-related transcriptome to interactome, 

discovery of disease-related structural and functional modules, and dynamic 

transcriptional modeling will provide insights into the virulent mechanisms of this deadly 

virus.

Networks encompass a set of nodes and edges, also referred as vertices and links, 

respectively. Nodes are systems components, whereas edges represent the interactions 

or relationships among the nodes (McCormack et al., 2016; Vidal et al., 2011). In 

biological systems, genes and their products perform their functions by interacting with 

other molecular components within the cell. For instance, proteins directly or indirectly 

interact with each other under both steady-state and different stress conditions to form 

static and dynamic complexes, and participate in diverse signaling cascades, distinct 

cellular pathways and a wide spectrum of biological processes. Proteome scale maps of 

such protein-protein interactions are referred to as interactomes (McCormack et al., 2016; 

Vidal et al., 2011). Meanwhile, specialized pathogens including viruses, bacteria and 

eukaryotes employ a suite of pathogenic or virulent proteins, which interact with high 
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value targets in host interactomes to extensively rewire the flow of information and cause 

disease (Mukhtar et al., 2011; Pan et al., 2016; Vidal et al., 2011; Wessling et al., 2014). 

Therefore, analyzing the network architecture and deciphering the structural properties of 

host-pathogens interactomes may reveal novel components in virus pathogenicity. Such 

analysis indicates that diverse cellular networks are governed by universal laws and 

exhibit scale-free network topology, whose degree distribution follows a power law 

distribution with a few nodes harboring increased connectivity (Vidal et al., 2011). Given 

that diverse biological systems display similar network architecture and topology, several 

structural features and physical characteristics within a cellular network may act as 

indicators of important nodes (Vidal et al., 2011). These include degree (the number of 

edges of a node), and betweenness (the fraction of the shortest paths that include a node) 

(Garbutt et al., 2014; McCormack et al., 2016; Mishra et al., 2019). Indeed, it has been 

shown that hubs (high degree nodes) and high betweenness nodes (bottlenecks) are 

targets of numerous human–viral, human–bacterial and other human diseases (Abreu et 

al., 2012; Arabidopsis Interactome Mapping, 2011; Calderwood et al., 2007; de Chassey 

et al., 2008; Gulbahce et al., 2012; Huttlin et al., 2017; Mukhtar et al., 2011; Pan et al., 

2016; Pfefferle et al., 2011; Roohvand et al., 2009; Rozenblatt-Rosen et al., 2012; Shapira 

et al., 2009; Simonis et al., 2012; Vidal et al., 2011; Wessling et al., 2014). In addition, 

host protein targets of diverse pathogens were demonstrated to be in close proximity 

(shortest path) with differentially expressed genes (DEGs) (Mishra et al., 2017). Specific 

to viral-host pathosystem, the network analysis of several interactomes including human 

T-cell lymphotropic viruses, Epstein-Barr virus, hepatitis C virus, influenza virus and 

human papillomavirus indicate that several of the above described topological features 
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are associated with viral targets (Abreu et al., 2012; Ackerman et al., 2018; Becerra et 

al., 2017; Bosl et al., 2019; Calderwood et al., 2007; de Chassey et al., 2008; Devkota et 

al., 2018; Gulbahce et al., 2012; Pfefferle et al., 2011; Pirrone et al., 2011; Roohvand et 

al., 2009; Rozenblatt-Rosen et al., 2012; Shapira et al., 2009; Simonis et al., 2012). 

Recently, in SARS-CoV human interactome, nodes corresponding to hubs and 

bottlenecks including respiratory chain complex I proteins were identified as targets of 

SARS-CoV. This system-wide analysis also identified several immunophilins as direct 

physical interacting partners of the CoV non-structural protein 1 (Nsp1) (Pfefferle et al., 

2011). Importantly, using affinity-purification mass spectrometry (AP-MS), a proteome-

scale mapping recently identified 332 SARS-CoV-2 Interacting Proteins (SIPs) in human 

(Gordon et al., 2020). This groundbreaking study paved new avenues to investigate novel 

therapeutic targets using a systems pharmacology approach. Undoubtedly, network 

biology presents a next-generation, integrative approach for drug repurposing that can 

predict individual or, more likely, combinatorial sets of drugs with high efficacy against 

SARS-CoV-2 (Nabirotchkin et al., 2020; Vitali et al., 2016). 

Here, we generated a comprehensive human-SARS-CoV-2 interactome encompassing 

12,852 nodes and 84,100 edges. We also performed a weighted co-expression network 

analysis (WGCNA) in Cultured Human Airway Epithelial Cells (Calu-3) treated with 

SARS-CoV or MERS-CoV over time (22, 445 nodes, 10,649,854 edges). By integrating 

co-expression network with interactome, we obtained Calu-3-specific human – SARS-

CoV-2 Interactome (CSI) containing 4,123 nodes and 14,650 edges. Network analysis 

indicates that the average degree, betweenness and information centrality of SIPs are 

enriched in CSI. Module-based functional pathway analyses discovered several disease-
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related clusters that are enriched in several signaling pathways and biological processes 

including eIF2 signaling/translation, inhibition of ARE-mediated mRNA degradation 

pathway, protein ubiquitination pathway, T cell receptor regulation of apoptosis, NER 

pathway, RNA degradation and retinoic acid-mediated apoptosis signaling pathway. 

Network topology analyses identified 28 high-value targets of SARS-CoV-2, which can 

form complexes with other highly influential nodes within CSI. These most important 

nodes are possibly involved in the viral entry, proliferation and survival in the host tissue 

as well as required to induce a conducive environment for viral sustenance and 

pathogenesis. Moreover, we incorporated transcriptome data of COVID-19 patients 

derived from bronchoalveolar lavage fluid (BALF) cells and peripheral blood mononuclear 

cells (PBMC) with our CSI data. Subsequently, we performed dynamic gene regulation 

modeling on the CSI nodes to decipher the intricate relationships between important 

transcription factors (TFs) and their target genes upon SARS-CoV-2 infection. Of 

particular of interest is the TF-regulatory relationships involved in host modifying 

processes such as protein translation, ubiquitination, and the cytokine storm. In summary, 

our integrative network topology analyses led us elucidate the underlying molecular 

mechanisms and pathways of SARS-CoV-2 pathogenesis.  

Results

Integrated interactome-transcriptome analysis to generate Calu-3-specific human-

SARS-CoV-2 Interactome (CSI)
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It is likely that the outcome of SARS-CoV-2 infection can largely be determined by the 

interaction patterns of host proteins and viral factors. To build the human – SARS-CoV-2 

interactome, we first assembled a comprehensive human interactome encompassing 

experimentally validated PPIs from STRING database (Szklarczyk et al., 2015). Since the 

STRING database is not fully updated, we manually curated PPIs from four additional 

proteomes-scale interactome studies, i.e. Human Interactome I and II, BioPlex, QUBIC, 

and CoFrac (reviewed in (Luck et al., 2017)). This yielded us an experimentally validated 

high quality interactome containing 18,906 nodes and 444,633 edges (Figure 1A). 

Subsequently, we compiled an exhaustive list of 394 host proteins interacting with the 

novel human coronavirus that was referred to as SARS-CoV-2 Interacting Proteins (SIPs) 

(Table S1). This comprises 332 human proteins associated with the peptides of SARS-

CoV-2 (Gordon et al., 2020), whereas the remaining 62 host proteins interact with the 

viral factors of other human coronaviruses including SARS-CoV and MERS-CoV (Zhou 

et al., 2020), which could also be of significance in understanding the molecular 

pathogenesis of SARS-CoV-2. By querying these 394 SIPs in the human interactome, we 

generated a subnetwork of 12,852 nodes and 84,100 edges that covers first and second 

neighbors of 373 SIPs (Figure 1A). Given that the SIPs-derived PPI subnetwork may not 

operate in all spatial or temporal conditions, coronavirus-specific co-expression data is 

used to filter the interactions in the context of COVID-19. It is important to note that no 

exceptionally high-resolution SARS-CoV-2 transcriptome was available at the time of 

analysis (details below). Therefore, we took advantage of extensive temporal expression 

data available for SARS-CoV and MERS-CoV (Figure 1B). Towards this, we performed a 

weighted co-expression network analysis (WGCNA) in Human Airway Epithelial Cells 
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(Calu-3) treated with SARS-CoV and MERS-CoV over time in vitro in culture. This 

analysis yielded a comprehensive co-expression network with 22,445 nodes and 

10,649,854 edges (Figure 1B). By integrating this Calu-3 co-expression network with 

SIPs-derived PPI subnetwork, we generated Calu-3-specific human-SARS-CoV-2 

Interactome (CSI) that contains 214 SIPs interacting with their first and second neighbors 

make a network of 4,123 nodes and 14,650 edges (Figure 1C and Table S1). We showed 

that CSI follows a power law degree distribution with a few nodes harboring increased 

connectivity, and thus exhibits properties of a scale-free network (r2 = 0.91; (Figure 1D 

and Table S1), similar to the previously generated other human-viral interactomes (Abreu 

et al., 2012; Ackerman et al., 2018; Becerra et al., 2017; Bosl et al., 2019; Calderwood et 

al., 2007; de Chassey et al., 2008; Devkota et al., 2018; Gulbahce et al., 2012; Pfefferle 

et al., 2011; Pirrone et al., 2011; Roohvand et al., 2009; Rozenblatt-Rosen et al., 2012; 

Shapira et al., 2009; Simonis et al., 2012). Taken together, we constructed a robust, high 

quality CSI that was further utilized for network-aided architectural and functional pathway 

analyses. 

Network topology and module-based functional analyses reveal that SARS-CoV-2 

targets core signaling pathways of the host network

From a network biology standpoint, a viral infection as well as other pathogen attacks can 

be viewed as a set of strategic perturbations, at least in part, within the core components 

of the host interactome (Ackerman et al., 2018; Becerra et al., 2017; Bosl et al., 2019). 

Since such central nodes correspond to proteins that exhibit increased connectivity and/or 
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central positions within a network, we addressed a question whether SARS-CoV-2 also 

attacks such important nodes within CSI. Towards this, we calculated the average degree 

(number of connections), betweenness (the fraction of all shortest paths that include a 

node within a network), load centrality (the fraction of all shortest paths that pass through 

a node), information centrality (the harmonic mean of all the information measures for a 

node in a connected network) and PageRank index (counting incoming and outgoing 

connections considering the weight of the edge) for SIPs, and compared them with their 

first and second neighbors. We demonstrated that these four topological features of SIPs 

were significantly higher than the other nodes within CSI (Figures 2A, B and C, Figures 

S1A and B, and Table S2; t- test P < 0.0001). We also showed that SIPs were significantly 

enriched in CSI compared to the human interactome (Figure 2D and Table S2; 

hypergeometric P< 3.159E-51). These results indicate that SARS-CoV-2 targets core 

structural components of the human-viral interactome, and prompted another question as 

to whether CSI also activates common biological processes in response to viral infection. 

Since nodes within CSI not only form protein complexes with each other but also 

transcriptionally co-express, we reasoned that densely connected nodes within this 

network may participate in similar biological functions. Towards this, we investigated the 

underlying modular structures (protein clusters ≥ 5 nodes) in CSI followed by Ingenuity 

Pathway Analysis (IPA). This approach allowed us to identify 27 modules ranging from 5 

to 66 nodes for the smallest and largest modules, respectively. Subsequently, we 

examined the biological processes, cellular pathways and signaling cascades that are 

modulated in the top 10 modules (Figures 2E-K and Table S2). Significantly enriched 

signaling pathways and biological processes included eIF2 signaling/translation 
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representing protein translation control, inhibition of ARE-mediated mRNA degradation 

pathway, protein ubiquitination pathway, T cell receptor regulation of apoptosis, NER 

pathway, RNA degradation and retinoic acid-mediated apoptosis signaling pathway (-

log(P-value) ≥2; Figures 2E-K, Figure S1C, and Table S2). Enrichment analysis of KEGG 

pathways can be utilized to ascertain signal transduction, as well as biochemical and 

metabolic pathways. The significantly enriched pathways (P-value ≤0.05) mainly included 

the infection with a number of viruses, oxidative phosphorylation, ER protein processing 

and apoptosis (Figure S1D and Table S2). Finally, we performed a human phenotype 

ontology analysis that identifies phenotypic abnormalities encountered in human 

diseases. Significantly enriched terms included mitochondrial inheritance, hepatic 

necrosis, respiratory failure and abnormality of the common coagulation pathway (Figure 

S1E). Collectively, we showed that SARS-CoV-2 proteins interact with central nodes of 

CSI, and these proteins are implicated in core molecular and cellular pathways to 

establish infection and continue disease progress. 

Network topology framework identifies most influential nodes in CSI

Human-viral interactome landscapes of several viruses have previously shown that viral 

proteins interact with nodes corresponding to high degree (hubs) and high betweenness 

(bottlenecks), and such structural features have been previously used to predict viral 

targets (Abreu et al., 2012; Ackerman et al., 2018; Becerra et al., 2017; Bosl et al., 2019; 

Calderwood et al., 2007; de Chassey et al., 2008; Devkota et al., 2018; Gulbahce et al., 

2012; Pfefferle et al., 2011; Pirrone et al., 2011; Roohvand et al., 2009; Rozenblatt-Rosen 
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et al., 2012; Shapira et al., 2009; Simonis et al., 2012). In addition to hubs and 

bottlenecks, PageRank algorithm was also effectively used to identify viral targets 

(Devkota et al., 2018). Moreover, these physical characteristics can also be used to 

prioritize the most influential genes in CSI for biological relevance and drug target 

discovery. Here, we used nine different centrality indices to identify the most influential 

nodes referred to as CSI Significant Proteins (CSPs). This includes the above described 

degree, betweenness, information centrality, PageRank index and load centrality as well 

as additional features such as eigenvector centrality (a measure of the influence of a node 

in a network), closeness centrality (reciprocal of the sum of the length of the shortest 

paths between the node and network), harmonic centrality (reverses the sum and 

reciprocal operations of closeness centrality and weighted k-shell decomposition) (an 

edge weighting method based on adding the degree of two nodes in network partition). 

While weighted k-shell decomposition analysis was recently performed to increase the 

predictability of host targets of bacterial pathogens (Ahmed et al., 2018), we showed that 

the top 5% of nodes reside in the inner layers of CSI (Figure 3A and Table S2). For other 

centrality measures, we also maintained a stringent threshold of top 5% to be considered 

as a highly influential node or CSP. Evidently, we can expect overlapping topological 

features for the same set of nodes. Noticeably, we observed a strong positive correlation 

between information centrality and degree (Figure 3B; r2 = 0.9), betweenness and degree 

(Figure 3C; r2 = 0.51) and PageRank and degree (Figure 3D; r2 = 0.84, Table S2). 

Collectively, we identified 28 CSPs that exhibit more than one high centrality measure 

(Figure 3E and Table S3). For instance, EEF1A1 that has previously been implicated in 
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SARS was enriched in all the centrality measures tested in our study (Figure 3F and Table 

S3). In addition, UBE2I, PPIA, and PHB were also associated with SARS and were 

enriched in more than five centrality measures (Figure 3F and Table S3). We categorized 

these 28 CSPs into three major groups based on their potential roles in COVID-19. While 

we expect some, if not all, of these proteins to have more than one function, the group-1 

CSPs might be largely relevant to modifying host response following SARS-CoV-2 

infection (Figure 3E). Moreover, the proteins in the other two groups might be involved in 

viral entry, proliferation, survival and pathogenesis as well as cytokine storm (Figure 3E; 

see details in discussion). Furthermore, we found that these 28 CSPs are targets of some 

of the well-known SARS-CoV-2 viral proteins. SARS-CoV-2 nsp7 targets most of the 

CSPs (i.e. seven in total), SARS-CoV2 nsp8 targets five CSPs, and SARS-CoV-2 M has 

four CSPs targets, while other SARS-CoV-2 nsps’ (2,4,10) and SARS-CoV-2 orfs’ (3b, 

6,8,9c) possess relatively fewer targets. Intriguingly, three of our CSPs (PPIA, RPS20, 

and NDUFA10) are targets of more than one SARS-CoV2 protein (Figure 3G and Figure 

S2), while PHB is the target of several viral proteins tested as bait at low threshold. It is 

also important to note that PHB is also targeted by viral proteins of SARS-CoV (Zhou et 

al., 2020). These data support previous findings that an individual viral factor can target 

multiple host nodes and several viral proteins can interact with the same host protein 

(Abreu et al., 2012; Ackerman et al., 2018; Becerra et al., 2017; Bosl et al., 2019; 

Calderwood et al., 2007; de Chassey et al., 2008; Devkota et al., 2018; Gulbahce et al., 

2012; Pfefferle et al., 2011; Pirrone et al., 2011; Roohvand et al., 2009; Rozenblatt-Rosen 

et al., 2012; Shapira et al., 2009; Simonis et al., 2012). Collectively, these data strengthen 
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our notion that centrality measures can be an effective method to predict highly influential 

nodes, leading us to discover 28 such CSPs. 

Dynamic gene regulation modeling elucidates core transcriptional circuitry and 

regulatory signatures pertinent to SARS-CoV-2 infection 

To further understand the biological characteristics, regulatory relationships and 

molecular events associated with the nodes in CSI, we incorporated transcriptome data 

of COVID-19 patients derived from bronchoalveolar lavage fluid (BALF) cells and 

peripheral blood mononuclear cells (PBMC) with our CSI data (Xiong et al., 2020). 

Overall, SARS-CoV-2 infection exhibited largely different transcriptional signatures for 

BALF cells and PBMC (Xiong et al., 2020). We identified a set of 228 and 215 differentially 

expressed genes (DEGs) in BALF cells and PBMC, respectively (p≤ 0.05, FC ≥2.0, 

Figures 4A and B, and Table S4). Thus, CSI constitutes over 25% of transcriptomes 

pertaining to both BALF cells and PBMC. Intriguingly, in BALF cells, we observed that the 

upregulated cluster A is enriched with eIF2 signaling/translation pathway, while the two 

down-regulated clusters (B and C) are enriched in retinoic acid-mediated apoptosis 

signaling pathway (Figure 4A). Conversely, one major cluster that is significantly 

upregulated in PBMC is enriched in T cell receptor regulation of apoptosis and protein 

ubiquitination pathway (Figure 4B). These data further support the notion that significantly 

enriched protein modules in CSI are involved in SARS-CoV-2 pathogenesis. 
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To reveal the regulatory circuitry and molecular events pertinent to SARS-CoV-2 

infection, we performed probabilistic modeling using iDREM (interactive Dynamic 

Regulatory Events Miner) framework that incorporates protein-DNA interaction data with 

transcriptomics (Ding et al., 2018). Given that iDREM requires time-course transcriptional 

profiling data, and in vivo or in vitro temporal SARS-CoV-2 transcriptome data is currently 

lacking, we made use of a high-resolution temporal SARS-CoV dataset (11 time points) 

(Sims et al., 2013). However, we only focused on those upstream transcriptional factors 

(TFs) and downstream target genes that were also present in BALF cells and PBMC, 

which allowed us to mimic SARS-CoV-2-mediated dynamic regulatory networks. This 

dynamic regulatory modeling identified several bifurcation points, where a set of TFs 

regulates their potential co-expressed and downstream target genes (Figure 4C, Figure 

S3, and Table S4). Based on the expression trajectories and path expression patterns, 

we identified a total of 84 and 94 significant regulators that were expressed in BALF cells 

and PBMC COVID-19 patients’ samples, respectively (P< 0.05, Table S4). Among them, 

we observed the first major wave of differential regulation and activation of TFs at 12-

hour post infection. At this bifurcation transcriptional event, we found a set of 4 TFs (YY1, 

STAT1, STAT2, and SREBF2), which were also expressed in BALF cells transcriptome. 

The next major bifurcation occurred at 24-hour post infection, comprising 39 and 43 TFs 

expressed in BALF cells and PBMC, respectively (Table S4). While we found similar sets 

of target genes regulated by diverse sets of TFs at different stages of infection, we also 

discovered multiple combinations of TFs regulating similar sets of downstream genes 

(Figure 4C). This reflects the intricate nature of dynamic regulatory relationships between 

TFs and their targets. 
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Next, we primarily focused on four major pathways/signaling events, i.e. cytokine storm, 

eIF2 signaling/translation, protein ubiquitination pathway and T cell receptor regulation of 

apoptosis. In the first example of cytokine storm, we identified a total of 10 TFs (STAT2, 

SUZ12, JUN, STAT1, MEF2A, RAD21, STAT3, BCL11A, NFE2, and BATF) expressed in 

BALF cells and PBMC COVID-19 patients’ samples (Table S4). Predominantly, we found 

that two TFs (STAT1 and STAT2) and one master regulator (JUN) are early 

transcriptional players activated at 12- and 24-hour post infection. In particular, we found 

CSI genes CXCL1 and TNFAIP3 co-regulated with CXCL2 and CXCL3, and IL-1A and 

IL-6, respectively, indicating that members of CSI participate in cytokine storm. Majority 

of these TFs are related to inflammatory/immune regulatory processes. 

Similarly, during eIF2 signaling/translation, we identified a total of 14 TFs (MXI1, BRCA1, 

ELF1, SIN3A, E2F4, IRF1, GABPB1, HMGN3, ETS1, SP2, POLR2A, ELK4, CHD2, and 

CCNT2) expressed in BALF cells and PBMC (Figure S3 and Table S4). This set of 

proteins is involved in the dynamic regulation of eIF2 signaling/translation-related genes 

over the course of time. Predominantly, we found that 12 master regulators (CHD2, 

SIN3A, ETS1, MXI1, CCNT2, E2F4, ELK4, IRF1, GABPB1, ELF1, POLR2A, and 

HMGN3) of eIF2 signaling/translation are involved in dynamic transcriptional regulation 

at 24-hour post infection. Interestingly, we revealed that 12 TFs also regulated 9 CSPs 

(AP2M1, NDUFA10, PHB, PPIA, PPP1CA, RPS20, RTN4, SCCPDH, and UBE2I) along 

with eIF2 signaling/translation-related genes. Correspondingly, during protein 

ubiquitination, we identified a total of nine TFs (IRF1, CCNT2, BRCA1, MXI1, CHD2, 
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POLR2A, SIN3A, E2F4, and HEY1) expressed in BALF cells and PBMC (Table S4). 

Interestingly, in the gene subset related to T cell receptor regulation of apoptosis, we 

identified a total of 11 TFs (E2F4, ELF1, CCNT2, ETS1, ELK4, HMGN3, SP2, IRF1, 

GABPB1, MXI1, and SIN3A) expressed in BALF cells and PBMC that participate in the 

regulation of this pathway genes including members of  CSPs (Table S4). Overall, we 

demonstrated the dynamic transcription patterns of CSI genes and CSPs that participate 

in cytokine storm, eIF2 signaling/translation, protein ubiquitination pathway and T cell 

receptor regulation of apoptosis (Figure S3 and Table S4). Finally, we identified a set of 

TFs that potentially regulate the above mentioned pathways’ genes at various stages of 

SARS-CoV-2 infection in COVID-19 patients.

Translation implications of this study 

Based on our interactome data as well as published investigations, SARS-CoV-2 proteins 

interact with human proteins resulting in the significant alterations in signaling pathways 

which provide conducive micro-environment for replication of SARS-CoV-2 (purine 

biosynthesis enzyme, IMPDH2 is one such example), activation of multiple protein 

degradation pathways (Cathepsin B/L, UBE2I etc.), modulation in the human tissues’ 

metabolic regulation (mTOR pathway and its direct/indirect regulators e.g. AMPK) 

(Gordon et al., 2020). These alterations are accompanied by the intense immune 

reactions manifested as concerted activation of multiple pro-inflammatory signals 

(epigenetic modifiers including bromodomain proteins, HDACs, ELF1, STATs, JUN, and 

SIN3A etc.), which could be the underpinning of cytokine storm. Accordingly, we believe 

that effective and prompt therapeutic strategies for blocking the SARS-CoV-2 infection 
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are not straight forward. Notably, keeping in view the long asymptomatic latency of virus 

infection, single agent treatment could at the most be marginally or partially effective 

depending on the stage of progression of the disease. However, combinatorial drug 

treatment approaches developed logically based on the potential inhibition of multiple 

molecular targets identified in our interactome analysis and other published data may 

prove highly efficacious in dampening the aggressive and lethal progression of the 

disease. A cocktail of three or four drugs is also used for the effective management of 

HIV-1 infection in humans(Pemovska et al., 2018; Pirrone et al., 2011).  We propose in 

our formula that the cocktail of therapeutic agents should include an antiviral drug 

combined with a protease inhibitor and a metabolic immune modulator/anti-inflammatory 

agent (NSAID). Since, multiple proteases and protein degradative signaling pathways 

may be involved in the pathogenesis of SARS-CoV-2 infection, it is hard to select one 

effective drug in this category. We observed in our analysis that calcium channel blockers 

may be more effective as calcium is required for the activation of proteases and anti-

hypertensive calcium channel blocker drugs may limit the cellular availability of free 

calcium. Thus, we propose that a cocktail of FDA approved drugs (for other indications) 

such as Remdesivir, Verapamil and Rapamycin may be one such potential combination. 

Other similar combinations of the FDA approved drugs may also be contemplated. 

Interestingly, Massachusetts General Hospital has initiated a clinical trial of nitric oxide 

(NO; NCT04305457) in these patient populations. Similar trials are initiated at other 

locations. These trials are based on the earlier success of NO in SARS-CoV-2 patients. 

Similarly, antioxidant deferoxamine (an iron chelator; (Phase I/Phase II): (NCT04333550) 

is reported to be tested in these patients in Iran. Indeed genes encoding antioxidants and 
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NO are also enriched in CSI (Figure S1C). A number of clinical trials have recently been 

initiated employing anti-inflammatory drugs, naproxen (Phase III): (NCT04325633) and 

hydroxychloroquine (Phase III): (NCT04329611). Therefore, it is likely that depending on 

the stage of disease progression, these drugs may manifest some advantage. Similarly, 

ACE2 inhibition is still considered of importance in view of recently initiated clinical trial of 

its inhibitor losartan (Phase I): (NCT04335123) in COVID-19 patients. In addition, a class 

of phytochemical agents known as Rocaglamides, which are potent inhibitors of PHBs 

could be a new class of agents effective against SARS-CoV-2 particularly in combination 

with antiviral. Finally, we observed that CSI proteins are related to signaling pathways 

that regulate metabolism. Thus, changes in cellular metabolism could play an important 

role in causing morbidity and mortality in these patients. Since, caloric restriction and 

exercise are regulator of these pathways, careful implementation of proper diet and 

exercise may show some definitive advantage.  

Discussion

In the last two decades, intra- and inter-species interactomes have been generated in a 

number of prokaryotes and eukaryotes including human, mouse, worm and plant models 

(Luck et al., 2017; McCormack et al., 2016; Mishra et al., 2019; Vidal et al., 2011). 

Investigating such interactomes has indicated that diverse cellular networks are governed 

by universal laws, and led to the discovery of shared and distinct molecular components 

and signaling pathways implicated in viral pathogenicity. In the present study, we 

constructed a Calu-3-specific human-SARS-CoV-2 Interactome (CSI) by integrating the 

lung epithelial cells-specific co-expression network with the human interactome. We 

determined that CSI displayed features of scale-freeness and was enriched in different 
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centrality measures. Identification of structural modules displayed the relationships with 

a set of functional pathways in CSI. In-depth network analyses revealed 28 most 

influential nodes. Additional noteworthy findings pertain to SARS-CoV-2 transcriptional 

signatures, regulatory relationships among diverse pathways in CSI and overall SARS-

CoV-2 pathogenesis including the cytokine storm. 

We constructed a comprehensive and robust CSI, a human-viral interactome that 

displayed scale free properties (r2= 0.91; Figure 1D). We also showed that the SARS-

CoV-2 interacting proteins (SIPs) exhibit increased average centrality indices compared 

to the remaining proteins in the network (Figure 1D, and Figures S1A and B). Numerous 

human-viral interactomes have previously been generated to uncover global principles of 

viral entry, infection and disease progression. These include human T-cell lymphotropic 

viruses, Epstein-Barr virus, hepatitis C virus, influenza virus, human papillomavirus, 

dengue virus, Ebola virus, HIV-1, and SARS-CoV (Abreu et al., 2012; Ackerman et al., 

2018; Becerra et al., 2017; Bosl et al., 2019; Calderwood et al., 2007; de Chassey et al., 

2008; Devkota et al., 2018; Gulbahce et al., 2012; Pfefferle et al., 2011; Pirrone et al., 

2011; Roohvand et al., 2009; Rozenblatt-Rosen et al., 2012; Shapira et al., 2009; Simonis 

et al., 2012), and all of these interactomes exhibited a power law distribution. Another 

significant tenet of interactomes is the existence of modular structures or modules, 

defined as sets of densely connected clusters within a network that exhibit heightened 

connectivity among nodes within a module. Such nodes within a module have previously 

been deemed to possess similar biological function or belong to the same functional 

pathways (Vlaic et al., 2018). Since nodes in CSI not only form protein complexes but 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3581857



21

also co-express specifically to coronavirus infection, we extracted several functional 

modules from our network (Figures 2E-K). The mostly highly connected module pertains 

to eIF2 signaling, and is comprised of protein translation-related proteins such as RPS 

and RPLs. Indeed, these ribosomal proteins have been shown to interact with viral RNA 

for viral proteins biosynthesis, and are subsequently required for viral replication in the 

host cells (Li, 2019). Noteworthy, two ribosomal proteins, RPL36 and RPS20, found to 

interact with several SARS-CoV-2 viral factors. Moreover, both of these proteins are also 

CSI Significant Proteins (CSPs) that harbor increased centrality measures (Figure 3E). 

Intriguingly, RPS20 has been demonstrated to operate as an immune factor that activates 

TLR3-mediated antiviral. It remains to be addressed whether RPS20 is a “double 

whammy” target of SARS-CoV-2 for (1) hijacking this important factor for viral translation 

and replication, and (2) suppressing a critical immune signaling pathway. Regardless, 

ribosomal proteins are critical targets of numerous viruses and play equally essential roles 

in developing antiviral therapeutics (Li, 2019).    

The ubiquitin proteasome system (UPS) constitutes the major protein degradation   

system of eukaryotic cells that participate in a wide range of cellular processes, and 

another critical target of diverse viruses (Tang et al., 2018). UPS plays an indispensable 

role in fine-tuning the regulation of inflammatory responses. For instance, proteasome-

mediated activation of NF-κB regulates the expression of proinflammatory cytokines 

including TNF-α, IL-1β, IL-8. Similarly, UPS is indispensable in the regulation of leukocyte 

proliferation (Tang et al., 2018). The UPS is generally considered a double-edged sword 

in viral pathogenesis. For example, UPS is a powerhouse that eliminates viral proteins to 

control viral infection, but at the same time viruses hijack UPS machinery for their 
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propagation (Tang et al., 2018). In case of herpes simplex virus type 1, Varicella-zoster 

virus and Simian varicella virus, induction of NF-κB – mediated host innate immunity is 

suppressed by the manipulation of UPS components (Ye et al., 2017). Moreover, it was 

revealed that UPS plays crucial roles at multiple stages of coronaviruses’ infection 

(Raaben et al., 2010). In our study, the ubiquitin proteasome module was composed of 

several members of 26S proteasome ATPase or non-ATPase regulatory subunits, which 

includes two CSPs, PSMD8 and PSMA2 (Figure 3E). It still needs to be determined 

whether these two CSPs play important roles in the expression of proinflammatory 

cytokines and are potentially involved in the cytokine storm. While the mechanistic 

evaluation of SARS-CoV-2 interaction with these two high-value targets needs to be 

explored, both the mRNA and protein expression corresponding to PSMD8 was recently 

shown to be decreased up to 30% in aged keratinocytes (Ishii et al., 2018). Since reduced 

proteasome activity results in aggregation of aberrant proteins that perturb cellular 

functions, we hypothesized that SARS-CoV-2 targets these CSPs to interfere with ER-

mediated cellular responses. Another noteworthy module is the T cell receptor regulation 

of apoptosis. Indeed, it was recently reported that SARS-CoV-2 infection may cause 

lymphocyte apoptosis demonstrated by overall cell count and transcriptional signatures 

in PBMC of COVID-19 patients (Chen et al., 2020; Xiong et al., 2020). Another significant 

CSP in this pathway is MTCH1 (Figure 3E), a proapoptotic protein that triggers apoptosis 

independent of BAX and BAK (Lamarca et al., 2008). We hypothesized that cytokines-

mediated induction of cytokine storm is partially dependent on the SARS-CoV-2 

interaction with MTCH1. Taken together, our module-based functional analyses identified 
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several novel molecular components, structural and functional modules, and overall 

provided insights into the pathogenesis of SARS-CoV-2. 

Our network topology analyses discovered 28 CSI Significant Proteins (CSPs) that have 

been implicated in several above described modules and pathways (Figure 3E). To 

provide a system-wide perspective of the importance of these CSPs in COVID-19, we 

categorized these CSPs into three groups based on their possible functionality. Group-1 

includes CSPs that are potentially relevant to modifying host response following SARS-

CoV-2 infection. These include EEF1A1, ETFA, MRPS27, MRPS5, MTCH1, NDUFA10, 

RAB1A, RAB2A, RAB5C, RAB7A and RHOA (Figure 3E). We hypothesized that such 

CSPs are important in creating protective environment in host tissue following the viral 

infection. For example, RAB and RHO group of ras proteins may be involved in 

augmenting inflammatory signaling pathways. While antioxidants regulating 

mitochondrial and cytoplasmic proteins are possibly important in regulating and 

maintaining redox homeostasis (Prashar et al., 2017), another CSP, SCCPDH, is involved 

in the metabolic production of lysine (Lys) and α-ketoglutarate (α-kg) (Kumar et al., 2012). 

Intriguingly, L-lysine supplementation appears to be ineffective for prophylaxis or 

treatment of herpes simplex lesions (Mailoo and Rampes, 2017). We hypothesized that 

SARS-CoV-2 may target SCCPDH to hijack the biosynthesis of this essential amino acid 

for its benefit. Group-2 CSPs that we identified are likely to be hijacked by SARS-CoV-2 

for its entry, proliferation and survival in the host tissue. In this category, one of the most 

important CSPs is prohibitin (PHB; Figure 3E). PHB is an important protein shown to be 

a receptor for dengue and Chikungunya viruses (Kuadkitkan et al., 2010; Wintachai et al., 

2012). Although it has been shown that ACE2 serves as the main receptor for SARS-
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CoV-2 entry into the cells (Shang et al., 2020), it is quite interesting that pathogenesis of 

the viral infection is not significantly different between the populations of hypertensive 

patients who receive or don’t receive ACE2 inhibitors (Kuster et al., 2020; Li et al., 2020; 

Meng et al., 2020; Vaduganathan et al., 2020). Therefore, it is plausible that under certain 

physiological conditions when SARS-CoV-2 does not engage with the ACE2 receptor for 

its entry into the cell, PHB serves as an alternative receptor. Another CSP Integrin β1 

encoded by ITGB1 was recently shown to be required for the entry of Rabies Virus (Shuai 

et al., 2020). Whether ITGB1 could also promote the entry of SARS-CoV-2 is another 

question that needs to be addressed. MEPCE is another important enzyme involved in 

RNA stabilization by capping the 5´ end of RNA with methyl phosphate (Xue et al., 2010). 

It is also likely that MEPCE is utilized by the COVID-19 virus for stabilization of its RNA 

in the host tissue. Similarly, PPP1CA was shown to regulate HIV-1 transcription by 

modulating CDK9 phosphorylation (Tyagi et al., 2015), and thus is potentially involved in 

the gene regulation of SARS-CoV-2. As discussed above, PSMA2 and PSMD8 are the 

two proteasomal CSPs (Ishii et al., 2018; Raaben et al., 2010; Ye et al., 2017). While 

infecting the lung epithelium, SARS-CoV-2 may utilize these UPS proteins for the fusion 

with the host cell membrane (Figure 3E). Similarly, NUP98 can also be utilized for viral 

entry into the nucleus. Additional three CSPs in this category, RPL36 and RPS20 (Li, 

2019; Lv et al., 2017) as well as SRP72 (Becker et al., 2017), could be employed for viral 

transcription and protein synthesis (Figure 3E). Finally, Group-3 CSPs are proteins, which 

SARS-CoV-2 may utilize both to facilitate its proliferation as well as to induce a conducive 

environment in the host tissue for its sustenance and pathogenesis (Figure 3E). These 

CSPs include AP2M1, CSNK2B, EEF1A1, ETFA, LARP1, RTN4 and UBE2I. Among 
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these CSPs, EEF1A1, PPIA, PSMA2, PSMD8, RAB1A, RAB2A, RAB5C, RAB7A, RHOA 

and UBE2I are identified as the ones that are potentially associated with the pathogenesis 

of the cytokine storm as observed in some severely affected patient populations. 

Intriguingly, EEF1A1, a target of several viruses, is known to be activated upon 

inflammation (Maruyama et al., 2007). This CSP is independently identified as one of the 

major regulators in human-SARS-CoV-2 predicted interactome (Guzzi et al., 2020). The 

CSPs, which regulate protein folding and translation, for example EIAF1, could be utilized 

by SARS-CoV-2 to halt host protein translation, folding and protein quality control. In 

addition, we also identified E2F4, TBX3 and SMARCB as first neighbors of some of these 

CSPs. These CSPs complexes play key roles in promoting cell death, causing 

inflammation and acting enzymatically as viral integrases. Collectively, these CSPs and 

their first neighbors could directly and indirectly perform intricate pathopysiological 

functions but those mentioned here could be the key effects of COVID-19 on host tissue 

dysregulation. This classification is also crucial for the design of effective therapeutic 

interventions against COVID-19. Finally, we presented transcriptional modeling of CSI 

genes including CSPs that participate in cytokine storm, eIF2 signaling/translation, protein 

ubiquitination pathway and T cell receptor regulation of apoptosis. Thus, these signaling 

pathways and TFs discovered through our analyses could provide important clues about 

effective drug targets and their combinations that can be administered at different stages 

of COVID-19. 

In conclusion, we generated a human-SARS-CoV-2 interactome, integrated virus-related 

transcriptome to interactome, discover COVID-19 pertinent structural and functional 

modules, identify high-value viral targets, and perform dynamic transcriptional modeling. 
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Thus, our integrative network biology-based framework led us uncover the underlying 

molecular mechanisms and pathways of SARS-CoV-2 pathogenesis. 

Methods

Human-SARS-CoV-2 interactome data acquisition

To build human interactome, we assembled a comprehensive protein-protein interactions 

(PPIs) comprising experimentally validated PPIs from STRING database (Szklarczyk et 

al., 2015) and four additional proteomes-scale interactome studies i.e. Human 

Interactome I and II, BioPlex, QUBIC, and CoFrac (reviewed in (Luck et al., 2017). The 

resulted human interactome have 18,906 nodes (proteins) with 444,633 edges 

(interactions). Our human interactome have 1,200 more proteins and 93,189 interactions 

which was not included in previous study (Ding et al., 2018). We collected a total of 394 

SARS-CoV-2 interacting proteins (SIPs) from two recent studies encompassing 332 

proteins of SARS-CoV-2-human interactions (Szklarczyk et al., 2015), and 62 proteins of 

SARS-CoV- and MERS-CoV- human interactions (Ding et al., 2018) (Table S1). 

Differential gene expression analysis on SARS-CoV, MERS-CoV and SARS-CoV-2 

datasets

We obtained microarray data for GSE33267, GSE37827, GSE56677 from GEO database 

(Edgar et al., 2002) and used GEO2R, an interactive web tool to generate differential 

gene expression between infection and mock treatments at their respective time points. 

Briefly, GEO2R utilizes limma R package. Limma is an R package for the analysis of gene 

expression microarray data. Specifically, it uses the linear model for analyzing designed 
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experiments and the assessment of differential expression. A threshold of 2 log fold 

change and FDR ≤ 0.05 was set for differential expression analysis of all microarray 

experiments. For comparative study of SARS-CoV-2 expression pattern, we downloaded 

expression data set of RNAs isolated from the bronchoalveolar lavage fluid (BALF) cells 

and peripheral blood mononuclear cells (PBMC) of COVID-19 patients (Xiong et al., 

2020). The criteria for filtering out significant genes were kept as adjusted p-value < 0.05 

and fold-change > 2

Generation of Calu-3 Cells-specific Co-expression Networks in response to SARS-

CoV and MERS-CoV infection

We mined Calu-3 Cells-specific datasets from GEO database (Edgar et al., 2002), and 

downloaded GSE33267 (Wild type), GSE37827 (icSARSCoV) and GSE56677(LoCov). 

We performed  individual weighted gene co-expression network analysis (WGCNA) 

(Langfelder and Horvath, 2008) package (R version 3.6.1), and constructed three co-

expression networks. Moreover, we also generated topological overlap measure (TOM) 

plots to compute a numerical entity that reflects interconnectedness among genes within 

a co-expression network. A cut-off of 0.75 was used to export the networks.  

Subsequently, we merged these networks to generate a comprehensive Calu-3 cells-

specific co-expression to study the network connectivity pattern of interactome. 

Network Integration and Topology Analysis

To extract the Calu-3-specific human-SARS-CoV-2 Interactome (CSI) we integrated the 

merged transcriptomics co-expression network (22, 445 nodes with 10,649,854 edges) 

and SARS-CoV-2–Human Interactions (12,852 nodes with 84,100 edges) including 373 
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SIPs. The resulted CSI network has 4,123 nodes with 14,650 edges including 214 SIPs 

with all possible interactions including their first and second neighbors (Table S1). 

Network topology analyses was performed using NetworkX (Hagberg et al., 2008) 

(version 2.4) Python (version 3.7.6) package was used except weighted k-shell-

decomposition for which we downloaded wk-shell-decomposition Cystoscope App 

(version 1.0). Cytoscape (Version 7.3.2) was used to visualize all the networks. 

Gene Ontology Functional Enrichment Analysis

The functional enrichment analysis was done by Kyoto Encyclopedia of Genes and 

Genomes (KEGG), ingenuity pathway analysis (IPA), WikiPathways, GO biological 

process, ClueGO, and enricher for human phenotype ontology and rare diseases term 

with their statistically significant parameters (Kuleshov et al., 2016). 

Reconstructing SARS-CoV Responsive Dynamic Regulatory Events

Interactive visualization of dynamic regulatory networks (iDREM) is a method which 

incorporates static and time series expression data to reconstruct condition-specific 

reaction network in an unsupervised manner (Pirrone et al., 2011). Additionally, the 

regulatory model identifies specific stimulated pathways and genes, which uses statistical 

analysis to recognize TFs that vary in activity among models. We implemented iDREM 

on 4,952 cumulative differentially expressed genes across 72 hours of SARS-CoV 

infection with log2 normalization for dynamic regulatory event mining with all human 

954,377 TFs/targets collections from encode database (Consortium, 2012). The dynamic 

activated pathways regulated by TFs was generated by EBI human gene ontology 

function. 
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Statistical analyses

Hypergeometric test, linear regression (r2), and Student t-test were performed using R 

version 3.3.1 as well as online Stat Trek tool. 

Data Availability

All datasets used for this study are accessible through Table S files. 
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Figure legends

Figure 1: Integrative multi-omics analysis identified Calu-3-specific human-SARS-

CoV-2 Interactome (CSI).

(A) Human interactomes (HI-II-14, BioPlex , QUBIC, CoFrac, and STRING) connections 

and 373 SARS-CoV-2 Interacting Proteins (SIPs) were used to extract the “SARS-CoV-

2::Human PPI” (12,852 Nodes and 84,100 Edges) including all possible interactions. (B) 

Weighted gene co-expression network (WGCNA) construction of SARS and MERS 

Infected Calu-3 cells gene expressions profiles from NCBI GEO datasets. The merged 

co-expression network has 22,445 Nodes and 10,649,854 Edges. (C) Calu-3-specific 

human-SARS-CoV-2 Interactome (CSI) with 4,123 Nodes and 14,650 Edges (Red: 214 

SIPs, Green: 1st Neighbor of SARS-CoV-2 Interacting Proteins (SIPs), Yellow: other 

proteins). (D) Degree of CSI nodes displays power law (r2=0.91) distribution and follow 

scale free property.

Figure 2: SARS-CoV-2 Interacting Proteins (SIPs) structural and functional 

properties in Calu-3-specific human-SARS-CoV-2 Interactome (CSI).
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(A) Average degree of SIPs (8.61) is significantly higher than other interacting proteins 

(7.03) in CSI network (t- test, P < 0.0005). (B) Average information centrality (IC) of SIPs 

(0.000284) is significantly heighted compared to remaining proteins (0.000269) in CSI 

network (t- test, P < 7.73E-81). (C) SIPs exhibit significantly increased average 

betweenness centrality (BW; 0.00105) compared to other interacting proteins (0.00067) 

in CSI network (t- test, P < 0.00033). (D) SIPs are significantly enriched in CSI network 

than the human interactome (hypergeometric test, P < 3.159E-51). (E-K) CSI 

subnetworks of highly clustered modules obtained with the application of MCODE 

Cytoscape app and K-means clustering. The significant functional annotation was done 

by Ingenuity Pathway Analysis (IPA) (Red= SARS-CoV-2 targets, Olive Blue= CSI 

nodes).

Figure 3: Identification of most influential nodes in Calu-3-specific human-SARS-

CoV-2 Interactome (CSI) using Network biology framework

(A) Weighted k-shell decomposition identifies inner and peripheral layers of CSI. 33% of 

all shells are considered as inner layers. Top 5% of inner layer proteins are considered 

as significant (Red= Inner layer, Blue= peripheral layer). (B-D). Correlation between 

information centrality and degree (B, r2 = 0.9), betweenness and degree (C, r2 = 0.51) 

and PageRank and degree (D, r2 = 0.84). (E) 28 CSI Significant Proteins (CSPs) that 

exhibit more than one high significant centrality measures (Degree, information centrality 

(IC), betweenness centrality (BW), eigenvector centrality (EV), closeness centrality (CC), 

load centrality (LC), harmonic centrality (HC), and PageRank). The size of blue spot 

determines the significant central node in a centrality indices. (F) Enrichr identified 

significantly enriched rare disease enriched CSPs in SARS, listeria infection, and 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=3581857



37

pulmonary sequestration (P-value <0.0001). (G) Network representation of significant 

SARS-CoV-2 viral protein interaction with 28 CSPs (Nodes: Red= viral proteins, Blue= 

CSPs significantly targeted by viral protein, grey= CSPs with insignificant viral protein 

interaction; edge width= MIST score, edge color= AvgSpec). 

Figure 4: Dynamic gene regulation modeling of transcriptional signatures pertinent 

to SARS-CoV-2 infection

(A) Heatmap of 228 Differentially expressed genes (DEGs) in COVID-19 patients derived  

bronchoalveolar lavage fluid (BALF) cells transcriptome and Calu-3-specific human-

SARS-CoV-2 Interactome (CSI). The heatmap was clustered based on k-mean with 

cluster with maximum genes are enriched in eIF2 Signaling/Translation pathways. Two 

out of three remaining clusters are enriched in Apoptosis. P and N denote patients and 

controls, respectively. (B) Heatmap of 215 DEGs common between transcriptome of 

peripheral blood mononuclear cells (PMBC) derived from P (patients) and N (controls) 

and Calu-3-specific human-SARS-CoV-2 Interactome (CSI). The heatmap was clustered 

based on k-mean with cluster with maximum genes are enriched in protein ubiquitination 

and apoptosis. (C) Dynamic regulatory event mining of 4,952 cumulative DEGs in SARS-

CoV across 72 hours of infection  reconstructed by incorporating static protein-DNA 

interaction data with time series (GSE33267).  The regulators only expressed in BALF 

cells and PBMC transcriptomes are highlighted. Significant regulators (TFs) control the 

regulation dynamics (P< 0.05). Major bifurcation of pathways occurs at 24- hour with a 

total of 46 TFs involved in dynamic modulation.
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Figure S1: SARS-CoV-2 Interacting Proteins (SIPs) additional structural and 

functional properties are enriched in Calu-3-specific human-SARS-CoV-2 

Interactome (CSI). 

(A) Average PageRank of SIPs (0.000286) is significantly higher than that other 

interacting proteins (0.00024) in CSI network (t- test, P < 0.00091). (B) SIPs display 

significantly increased average load centrality of (0.0011) compared to other interacting 

proteins (0.000672) in CSI network (t- test, P < 0.00034). (C) Ingenuity Pathway 

Analysis (IPA) identified significantly enriched canonical pathways in CSI proteins (-

log(P-value) ≥12). (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis identified infection to viruses, oxidative phosphorylation, ER protein processing 

and apoptosis that are significantly enriched in biochemical and metabolic pathways in 

CSI proteins (P-value ≤0.05). (E) Significantly enriched human phenotype ontology is 

identified using Enrichr. Mitochondrial inheritance, hepatic necrosis, respiratory failure 

and abnormality of the common coagulation pathway terms are enriched.  
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Figure S2: CSI Significant Proteins (CSPs) interacting SARS-CoV-2 proteins 

Network representation of SARS-CoV-2 viral protein interaction with 28 CSPs (Nodes: 

Red= viral proteins, Blue= CSPs significantly targeted by viral protein, grey= CSPs with 

insignificant viral protein interaction; edge width= MIST score, edge color= AvgSpec).  

 

 

SARS-CoV-2 viral protein::28 CSPs interaction
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Figure S3: 26 significant path expression pattern of 4,952 differentially expressed 

genes (DEGs) in SARS-CoV infection across 72 hours (GSE33267). 

Dynamic regulatory event mining of 4,952 cumulative DEGs in SARS-CoV across 72 

hours of infection with log2 fold change expression. The regulators only expressed in 

BALF and PBMC transcriptomes are highlighted. Total significant bifurcated paths (A-X) 

were identified based on respective significant regulators (TFs) (P< 0.05). Top five path 

expressions (A-E) are mostly enriched by cytokine storm genes (P< 0.05). Additionally, 

these five paths are enriched by cytokine-mediated signaling pathway, response to 

external stimulus, defense response, olfactory receptor activity, and transmembrane 

signaling receptor activity. Most significant regulators of cytokine storm genes are 
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(BATF, BCL11A, JUN, MEF2A, NFE2, RAD21, STAT1, STAT2, STAT3, and SUZ12). 

While, bottom six path expressions (S-X) are mostly enriched by 9 CSI significant 

proteins, eIF2 Signaling/Translation, protein ubiquitination pathway, T cell receptor 

regulation of apoptosis, and retinoic acid mediated apoptosis signaling (P< 0.05). 

Additionally, these six paths are enriched in viral transcription, ribosomal subunit, 

cytosolic ribosome, protein targeting to membrane extracellular exosome, protein 

maturation, photoreceptor cell cilium, transport along microtubule cilium, activation of 

protein kinase activity, cellular metal ion homeostasis, post-translational protein 

modification. There are 43 significant TFs enriched in these processes. 
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